If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-32x+8=0
a = 16; b = -32; c = +8;
Δ = b2-4ac
Δ = -322-4·16·8
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-16\sqrt{2}}{2*16}=\frac{32-16\sqrt{2}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+16\sqrt{2}}{2*16}=\frac{32+16\sqrt{2}}{32} $
| 7+2x=21x= | | m-1÷m+1=2m-5÷m-1 | | 4x-5=11x= | | (a-6)²= | | 7x+9=6x-12 | | 2x(5-3x)-2x(3x-4)=0 | | x-x*0.07=100 | | .10=x-78/5.5 | | t÷6-1=11 | | -3x+7=x+19 | | -2x+2x=-4+16x | | 2x-3x=11-9x | | (1/2)(5n–6)=3n | | 3(2a+5)+4(3a-1)=109 | | (8.8)^x=(0.5)^-x | | 2x-6=10x+20 | | 2x+4x+6x=64 | | |2x|=7.4 | | (4(3x)^(2))/((2x)^(2))=9 | | 3b=220 | | E+b=225 | | 6z-10=z+20 | | 4/5=10-x | | 3x-1/4-2x+2/6=5/2-2x | | 2n-6=4n-12 | | 3(y-1)-2(1-2y)=9 | | 3*x+2+35+52=180 | | (2+x)+1=2x-3 | | x/x-4=4/x-4 | | (2x+16)+7=x+16 | | 3/4(7x-1)-(2x(-1-x)/2=x+3/2 | | (x+10)+x+4=8 |